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Numerical measures of model performance



Data Splitting
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Holdout Sets
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K-Fold Cross-Validation

The first fold is treated as a validation set, and the method is fit on the 
remaining K – 1 folds. The MSE is computed on the observations in the 
held-out fold. The process is repeated K times, taking out a different 
part each time.

By averaging the K estimates of the test error, we get an estimated 
validation (test) error rate for new observations.

Randomly divide the data set of into 
K folds (typically K = 5 or 10).



K-Fold Cross-Validation

• Let the K folds be C1, … , CK, where Ck denotes the indices of the observations in 
fold k. There are nk observations in fold k: if N is a multiple of K, then nk = n / K.

• Compute: CV(𝐾) = σ𝑘=1
𝐾 𝑛𝑘

𝑛
MSE𝑘

where MSE𝑘 =
1

𝑛𝑘
σ𝑖∈𝐶𝑘

(𝑌𝑖 − 𝑌𝑖)
2 and 𝑌𝑖 is the fitted value for observation 

i, obtained from the data with fold k removed.



What value should we choose for K? With K = N, the cross-validation 
estimator is approximately unbiased for the true (expected) 
prediction error but can have high variance because the N “training 
sets” are so similar to one another. The computational burden is also 
considerable, requiring N applications of the learning method. 
In certain special problems, this computation can be done quickly. On 
the other hand, with K = 5 say, cross-validation has lower variance. 
But bias could be a problem. The performance of the classifier 
improves as the training set size increases to 100 observations; 
increasing the number further to 200 brings only a small benefit. If 
our training set had 200 observations, 5 fold cross-validation would 
estimate the performance of our classifier over training sets of size 
160, which is virtually the same as the performance for training set 
size 200. Thus cross-validation would not suffer from much bias. 
However, if the training set had 50 observations, 5 fold cross-
validation would estimate the performance of our classifier over 
training sets of size 40, and it would be an underestimate of 1 − Err. 
Hence as an estimate of Err, cross-validation would be biased upward.

Cross Validation
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Befitting Cross Validation (BCV) Principles

• BCV Principle 1: The formation of training and hold-out datasets 
should reflect the goal of the study

• BCV Principle 2: The training dataset and the hold-out dataset should 
have the same data generation structure as the whole dataset

• BCV Principle 3: The construction of the hold-out dataset should 
reflect the data generation structure needed for the predictive model
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Holdout Validation Options in JMP

Validation Column utility available on 

Predictive Modeling Menu

Stratified Random is a first choice 

for most data.

Grouped Random will keep rows 

within a group in the same portion of 

the data.

Cutpoint is for time sequenced data.



Evaluating Predictive Performance
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Measuring Predictive Error

Not the same as “goodness-of-fit” 

We want to know how well the model predicts new data, not how well 
it fits the data it was trained with

Key component of most measures is difference between actual y and 
predicted y (“error”)
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Measures of Error

MAE, MAD, or AAE: Mean absolute error/deviation or average 
absolute error

Gives an idea of the magnitude of errors

Average error

Gives an idea of systematic over- or under-prediction

MAPE: Mean absolute percentage error

RMSE (root-mean-squared-error) or RASE (root average squared error): 
Square the errors, find their average, take the square root

Total SSE:  Total sum of squared errors
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Least Squares Regression
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Regression (Decision) Tree



Prediction Error
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Decision Tree Error Rate
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Accuracy Measures (Classification)

25



26

Decision Tree



Misclassification error

Error = classifying a record as belonging to one class when it belongs to 
another class.

Error rate = percent of misclassified records out of the total records in 
the validation data.
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Naïve Rule

Naïve rule: classify all records as belonging to the most prevalent class

• Often used as benchmark:  we hope to do better than that

• Exception: when goal is to identify high-value but rare outcomes, we 
may do well by doing worse than the naïve rule (see “lift” – later)
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Separation of Records

“High separation of records” means that using predictor variables 
attains low error

“Low separation of records” means that using predictor variables does 
not improve much on naïve rule
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Confusion Matrix

201 1’s correctly classified as “1”

85 1’s incorrectly classified as “0”

25 0’s incorrectly classified as “1”

2689 0’s correctly classified as “0”
30



Error Rate

Overall error rate = (25+85)/3000 = 3.67%

Accuracy = 1 – err = (201+2689) = 96.33%

If multiple classes, error rate is: 
(sum of misclassified records)/(total records)
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Cutoff for classification

Most data mining algorithms classify via a 2-step process:

For each record,
1. Compute probability of belonging to class “1”
2. Compare to cutoff value, and classify accordingly

• Default cutoff value is 0.50 
If >= 0.50, classify as “1”
If < 0.50, classify as “0”

• Can use different cutoff values

• Typically, error rate is lowest for cutoff = 0.50

32



Cutoff Table (Riding Mowers)

If cutoff is 0.50: 12 
records are classified 
as “owner”

If cutoff is 0.75: 8 
records are classified 
as “owner”
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Confusion Matrix for Different Cutoffs

 The cutoff can be changed using a formula 
in a new column.

 Different cutoffs can be compared to see 
which provides the lowest misclassification 
error on the validation set
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ROC and Lift
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When One Class is More Important

In many cases it is more important to identify members of one class

• Tax fraud

• Credit default

• Response to promotional offer

• Detecting electronic network intrusion

• Predicting delayed flights

In such cases, we are willing to tolerate greater overall error, in return for better 
identifying the important class for further attention
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Alternate Accuracy Measures

If “C1” is the important class:

Sensitivity = % (or proportion) of “C1” class correctly classified

Specificity = % of “C0” class correctly classified

False positive rate = proportion of predicted “C1’s” that were not “C1’s”

False negative rate = proportion of predicted “C0’s” that were not “C0’s”
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ROC Curve

Sensitivity and 1-Specificity are plotted on an ROC Curve.

38



ROC curves

ROC curves are similar to lift charts
• Stands for “receiver operating characteristic”

• Used in signal detection to show tradeoff between hit rate and false alarm rate over noisy 
channel

Differences to lift chart:
• y axis shows percentage of true positives in sample rather than absolute number

• x axis shows percentage of false positives in samplerather than sample size
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A sample ROC curve
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• Jagged curve—one set of test data

• Smoother curve—use cross-validation



Cross-validation and ROC curves

Simple method of getting a ROC curve using 
cross-validation:
• Collect probabilities for instances in test folds
• Sort instances according to probabilities
• Another possibility is to generate an ROC curve 

for each fold and average them
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ROC curves for two schemes
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• For a small, focused sample, use method A

• For a larger one, use method B

• Inbetween, choose between A and B with appropriate probabilities



Lift Curves

Useful for assessing performance in terms of identifying the most 
important class

Helps evaluate, e.g.,
• How many tax records to examine

• How many loans to grant

• How many customers to mail offer to
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Lift Curves

Compare performance of data mining (DM) model to “no model, pick 
randomly”

Measures ability of DM model to identify the important class, relative 
to its average prevalence

Lift curves give explicit assessment of results over a large number of 
cutoffs
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Lift Curves

Compare lift to “no model” baseline:

For a given proportion of our data, in terms of propensity, how 
much better does our model predict than the “no model” baseline.

What is lift:

How much better the model classifies than random assignment.  
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Lift Curves

For the top 30% of our data (top propensities), the lift is 2.0.  The model 
correctly identifies 2x the number of owners than the “no model” baseline.
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Generating a lift chart
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• Sort instances based on predicted probability of being positive:

• x axis in lift chart is sample size for each probability threshold

• y axis is number of true positives above threshold



A hypothetical lift chart
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40% of responses
for 10% of cost

80% of responses
for 40% of cost



Asymmetric Costs

49



Misclassification Costs May Differ

The cost of making a misclassification error may be higher for one class 
than the other(s)

Looked at another way, the benefit of making a correct classification 
may be higher for one class than the other(s)
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Example – Response to Promotional Offer

Suppose we send an offer to 1000 people, with 1% average response 
rate (“1” = response, “0” = nonresponse):

• “Naïve rule” (classify everyone as “0”) has error rate of 1% (seems 
good)

• Using DM we can correctly classify eight 1’s as 1’s. 
It comes at the cost of misclassifying twenty 0’s as 1’s and two 0’s as 1’s.
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The Confusion Matrix

Error rate = (2+20) = 2.2%  (higher than naïve rate)
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Introducing Costs & Benefits

Suppose:

• Profit from a “1” is $10

• Cost of sending offer is $1

Then:

• Under naïve rule, all are classified as “0”, so no offers are sent: no 
cost, no profit
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Introducing Costs & Benefits

• Under DM predictions, 28 offers are sent.
8 respond with profit of $10 each

20 fail to respond, cost $1 each

972 receive nothing (no cost, no profit)

• Net profit = $60
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Generalize to Cost Ratio

Sometimes actual costs and benefits are hard to estimate

• Need to express everything in terms of costs (i.e., cost of 
misclassification per record)

• Goal is to minimize the average cost per record

A good practical substitute for individual costs is the ratio of 
misclassification costs (e,g,, “misclassifying fraudulent firms is 5 times 
worse than misclassifying solvent firms”)
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Minimizing Cost Ratio

q1 = cost of misclassifying an actual “1”, 

q0 = cost of misclassifying an actual “0”

Minimizing the cost ratio q1/q0 is identical to

minimizing the average cost per record
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Note: Opportunity costs

• As we see, best to convert everything to costs, as opposed to a mix of 
costs and benefits 

• E.g., instead of “benefit from sale” refer to “opportunity cost of lost 
sale”

• Leads to same decisions, but referring only to costs allows greater 
applicability
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Multiple Classes

For m classes, confusion matrix has m rows and m column:

• Theoretically, there are m(m-1) misclassification costs, since any case 
could be misclassified in m-1 ways

• Practically too many to work with

• In decision-making context, though, such complexity rarely arises –
one class is usually of primary interest
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Oversampling and Asymmetric Costs

59



Rare Cases

Asymmetric costs/benefits typically go hand in hand with presence of rare but 
important class

• Responder to mailing

• Someone who commits fraud

• Debt defaulter

Often we oversample rare cases to give model more information to work with

Typically use 50% “1” and 50% “0” for training
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Example

The graphs on the following slides show optimal classification under 
three scenarios:

• assuming equal costs of misclassification

• assuming that misclassifying “o” is five times the cost of misclassifying “x”

• Oversampling scheme allowing DM methods to incorporate asymmetric costs
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Classification: equal costs
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Classification: Unequal costs

63



Oversampling Scheme
Oversample “o” to appropriately weight/ 
misclassification costs
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An Oversampling Procedure

1. Separate the responders (rare) from non-responders

2. Randomly assign half the responders to the training sample, plus 
equal number of non-responders

3. Remaining responders go to validation sample

4. Add non-responders to validation data, to maintain original ratio of 
responders to non-responders

5. Randomly take test set (if needed) from validation
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Classification Using Triage

• Instead of classifying as C1 or C0, we classify as:

• C1

• C0

• Can’t say

The third category might receive special human review

Take into account a gray area in making classification decisions
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Summary

• Evaluation metrics are important for comparing across DM models, 
for choosing the right configuration of a specific DM model, and for 
comparing to the baseline

• Major metrics: confusion matrix, error rate, predictive error

• Other metrics when
one class is more important

asymmetric costs

• When important class is rare, use oversampling

• In all cases, metrics are computed from validation data
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A computer intensive method, proposedin 1979 by Brad 
Efron from Stanford University in order to conclude 
something about a statistic T computed from data, using 
only the data.

Bootstrapping can be considered a Principle of 
Statistical Inference that can handle non-standard 
situations in an intuitive and robust way

von Minchausen, KFH (1783) The Guide to Happy People, Berlin
Efron, B (1979) Bootstrap Methods: Another Look at the Jackknife, Annals of Statistics 7(1): 1-26
Efron, B  and Tibshriani, R (1993) An Introduction to the Bootstrap, Chapman and Hall, New York

Bootstrapping background
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How does it work?

◼ Take a Random Sample With Replacement (RSWR) and compute the 
statistic T

◼ Resample M times and re-compute statistic T

◼ Derive Empirical Bootstrap Distribution (EBD) and Bootstrap 
Confidence Interval (BI) for population parameter
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Testing for the mean
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Bootstrapping the standard deviation
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Hybrid1 Hybrid2 Hybrid3

2060 1907 1887

2127 1940 1834

1947 1700 1587

2140 1934 1814

1960 1707 1614

1960 1680 1680

2134 1940 1747

2054 1794 1660

2094 1707 1600

344.1850

813.1902

406.2143

3

2

1

=

=

=

X

X

X

F= MSBetween/MSWithin = 49.274

01.21001

35.16648

54.9929

3
2

2
2

1
2

=

=

=

S

S

S

Bootstrapping the ANOVA table
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Kenett, R.S. and Zacks, S. (2021) Modern Industrial Statistics: With Applications in R, MINITAB, and JMP, 3rd Edition, Wiley.

Kenett, R.S., Zacks, S. and Gedeck, P (2022) Modern Statistics: A Computer-Based Approach with Python, Springer.

EBD of F values under H0
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Befitting Bootstrap Analysis (BBA) Principles

• BBA Principle 1: The generation of bootstrapped datasets should 
reflect the goal of the study.  

• BBA Principle 2: The bootstrapped dataset should inherit the same 
data generation structure as the original dataset.  
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https://onlinelibrary.wiley.com/doi/abs/10.1002/qre.802
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Wave soldering

79

Factors

A: prebake temperature

B: flux density

C: conveyor speed

D: preheat condition

E: cooling time

F: solder agitator

G: solder temperature

Levels  

-1 +1

-1 +1

-1 +1

-1 +1

-1 +1

-1 +1

-1 +1

Objective: Decrease number of solder defects 
following wave soldering
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Wave soldering
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Applying the bootstrap

EB
mean

EB
variance

EB
std

95% BCI
LCI       UCI

A: prebake temperature

B: flux density

C: conveyor speed

D: preheat condition

E: cooling time

F: solder agitator

G: solder temperature

Bootstrapped Regression
coefficients

A

B

C

D

E

F

G
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Bootstrap

EBD versus Regression estimates*

LCI UCI

A 0.5476 0.0596 0.2441 0.1929 0.9477

B -0.5462 0.0597 0.2443 -0.935 -0.186

C 1.4333 0.0604 0.2458 1.0754 1.8512

D -0.1468 0.0577 0.2402 -0.5253 0.2114

E -0.2822 0.0577 0.2402 -0.6391 0.1014

F -0.166 0.0611 0.2472 -0.5817 0.1939

G -0.8878 0.062 0.249 -1.2623 -0.4692

std

95% BCI

mean variance

A 0.5404 0.2986 1.8095 0.0779

B -0.5393 0.2986 -1.806 0.0784

C 1.4238 0.2986 4.7678 0

D -0.153 0.2986 -0.5123 0.6113

E -0.282 0.2986 -0.9442 0.3507

F -0.1563 0.2986 -0.5235 0.6035

G -0.8932 0.2986 -2.991 0.0047

Value t value Pr(>|t|)Std.

*After applying a square root transformation 82

Least Squares

Empirical Bootstrap



Regr. Bootstrap Delta Regr. Bootstrap Delta

A 0.299 0.244 18% 0.239 0.249 -4%

B 0.299 0.244 18% 0.239 0.237 1%

C 0.299 0.246 18% 0.239 0.243 -2%

D 0.299 0.240 20%

E 0.299 0.240 20%

F 0.299 0.247 17%

G 0.299 0.249 17% 0.239 0.246 -3%

A*B 0.239 0.240 -1%

A*C 0.239 0.244 -2%

B*C 0.239 0.235 2%

A*G 0.239 0.240 -1%

B*G 0.239 0.239 0%

C*G 0.239 0.245 -3%

A*B*C 0.239 0.245 -3%

A*B*G 0.239 0.239 0%

A*C*G 0.239 0.245 -3%

B*C*G 0.239 0.239 0%

A*B*C*G 0.239 0.235 2%

No interactions With interactions

EBD versus Regression estimates

Bootstrapping is more robust than standard regression analysis
83

Better model
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https://www.youtube.com/watch?v=Yi-e4sMK5tA&t=701s

https://www.youtube.com/watch?v=Yi-e4sMK5tA&t=701s
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