A Biomed Data Analyst Training Program

Model performance

Professor Ron S. Kenett



Chapter 7
Modern Analytic Methods: Part 1 'pofiern

A Computer-Based Approach
v

Statistics

7.4 Determining Model Performance

The performance of a model can be measured in various ways. The Python package
scikit-learn contains a wide variety of different metrics. A few of them are
listed in Table 7.1.

In order to avoid overfitting, one needs to compare results derived from fitting
the model with a training set to results with a validation set not involved in fitting
the model. There are basically two approaches to achieve this.

A first approach is applicable with large data sets. In this context one can
randomly select a subset, through uniform or stratified sampling. This results in



Table 7.1 Model performance metrics

Classification

Accuracy | Accuracy is defined as the number of correct predictions made by the model on a
data set

Balanced | Modification of accuracy suitable for imbalanced data sets

accuracy

Regression

R* Coefficient of determination (see Sect. 4.3.2.1)

RE di Adjusted coefficient of determination (see Sect. 4.3.2.1)

MSE Mean squared error is defined as the mean squared difference between actual and
predicted v

MAE Mean absolute error is defined as the mean absolute difference between actual and
predicted v

AIC Akaike information criterion

BIC Bayesian information criterion
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K-Fold Cross-Validation

Randomly divide the data set of into
K folds (typically K=5 or 10).

The first fold is treated as a validation set, and the method is fit on the
remaining K— 1 folds. The MSE is computed on the observations in the

held-out fold. The process is repeated K times, taking out a different
part each time.

By averaging the K estimates of the test error, we get an estimated
validation (test) error rate for new observations.



K-Fold Cross-Validation

* Let the K folds be C,, ..., C,, where C, denotes the indices of the observations in
fold k. There are n, observations in fold k: if N is a multiple of K, then n,=n /K.

* Compute: CVig) = Z’k{:l%MSEk

where MSE;, = nizieck(Yi — ¥))? and Y is the fitted value for observation
k

i, obtained from the data with fold kK removed.
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Cross Validation

Springer Series in Statistics

Trevor Hastie
Robert Tibshirani
Jerome Friedman

Data Mining, Inference, and Prediction

What value should we choose for K? With K = N, the cross-validation
estimator is approximately unbiased for the true (expected)
prediction error but can have high variance because the N “training
sets” are so similar to one another. The computational burden is also
considerable, requiring N applications of the learning method.

In certain special problems, this computation can be done quickly. On
the other hand, with K =5 say, cross-validation has lower variance.
But bias could be a problem. The performance of the classifier
improves as the training set size increases to 100 observations;
increasing the number further to 200 brings only a small benefit. If
our training set had 200 observations, 5 fold cross-validation would
estimate the performance of our classifier over training sets of size
160, which is virtually the same as the performance for training set
size 200. Thus cross-validation would not suffer from much bias.
However, if the training set had 50 observations, 5 fold cross-
validation would estimate the performance of our classifier over
training sets of size 40, and it would be an underestimate of 1 - Err.
Hence as an estimate of Err, cross-validation would be biased upward.
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Abstract

Modern statistics and machine learning typically involve large amounts of data coupled
with computationally intensive methods. In a predictive modeling context, one seeks
models that achieve high predictive accuracy on new datasets. This is typically
implemented by partitioning the data into training and hold-out data sets. The allocation
is often conducted randomly, at the row level of the data matrix. In this work, we discuss
an overlooked gap in machine learning and predictive modeling, the role of data
structure and data generation process in the partitioning of observational data into
training and hold-out datasets. Ignoring such structures can lead to deficiencies in model
generalizability and operationalization. We highlight that explicitly embracing the data
generation structure to partition the data for validating predictive model is essential to
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Befitting Cross Validation (BCV) Principles

e BCV Principle 1: The formation of training and hold-out datasets
should reflect the goal of the study

* BCV Principle 2: The training dataset and the hold-out dataset should
have the same data generation structure as the whole dataset

* BCV Principle 3: The construction of the hold-out dataset should
reflect the data generation structure needed for the predictive model



RESULT UNITS REFERENCE VALUES REMARKS

EOSINOPHILS 0.27 K/UL ( 0.00 - 0.60) (...*.....
EOSINOPHILS % 2.90 % ( 0.00 - 6.00) (...*.....
BASOPHILS 0.06 K/UL ( 0.00 - 0.15) (...*.....
BASOPHILS % 0.60 % ( 0.00 - 1.50) (...*.....
RBC 5.10 M/UL ( 4.30- 6.00) (...*.....
HEMOGLOBIN 14.70 G/DL ( 13.50 - 17.50) (..*......
HEMATOCRIT 44 .50 % ( 38.00- 50.00) (....*
MCV 87 .30 FL ( 80.00 - 98.00) (...*.....
MCH 28.80 PG ( 27 .00 - 33.00) (..*......
MCHC 33.00 G/DL ( 32.00- 35.50) (..*......
RDW 14.30 % ( 11.00- 16.00) (..... *
NRBC 0.00 K/UL ( 0.00 - 0.01) (*........
NRBC% 0.00 % ( 0.00 - 0.10) (*........
PLATELETS 268.00 K/UL ( 150.00- 400.00) (...*.....
PLATELET -LARGE CELL RATIO 35.40 %
N.R. 19.4-43.7%
MPV 11.40 FL

N.R 6.5-11.5 FL
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Association Rules

Side Effects & Concerns Alternatives Drug Facts

Nicardipine side effects and concerns

116 different concerns were found, out of 310 posts about Nicardipine.

Click on the topics below to find out what patients said about each issue.

Bleeding

@ | Happened to me too

Headaches

@ | Happened to me too

m
o
D
=
f

@ | Happened to me too

Hypertensive Crisis

@ | Happened to me too

Tiredness

@ | Happened to me too

18

17

10



By report

Unique Subject

11007
11001
11007
11002
11002
11002
11002
11002
11002
11002
11002
11002
11002
11002
11002
11002
11002
11002
11002
11002
11002
11002
11002
11002

Identifier

Reported Term for the Adverse Event

Vasoconstriction
Hypertension

Intracranial pressure increased
Pulmonary oedema

Pyrexia

Hepatic function abnormal
Intracranial pressure increased
Enanthema

Hydrocephalus

Subarachnoid haemorrhage
Hyperglycaemia

Isosthenuria

Anaemia

Pericardial effusion

Cardiac failure congestive
Hypertension

Alvealitis

Sepsis neonatal
Vasoconstriction

Atrial fibrillation
Electrocardiogram T wave inversion
Cerebral infarction

Brain oedema

Coagulopathy

By patient

4 Transaction Listing
Transaction ID Item Set

101001
101002
101004
101005
101006
101007
101008
101009
101010
101011
101012
101013
101014
101015
101016
101017
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014

Hydrocephalus, Pyrexia, Vasoconstriction, Vomiting

Alveolitis, Hydrocephalus, Hyperglycaemia, Pulmonary oedema, Urinary tract infection, Vasoconstriction, Ventricular extrasystoles
Brain oedema, Coma, Hydrocephalus, Hyperglycaemia, Hypotension, Intracranial pressure increased, Subarachnoid haemorrhage, ...
Alveolitis, Anaemia, Heart rate increased, Hydrocephalus, Hyperglycaemia, Hypertension, Hypokalaemia, Infection, Intestinal perfo...
Cardiac failure congestive, Pulmonary oedema, Vasoconstriction

Alveolitis, Cerebral infarction, Hyperglycaemia, Hypotension, Intracranial pressure increased, Isosthenuria, Phlebitis, Pyrexia, Respir...
Cerebral hypoperfusion, Ependymitis, Hydrocephalus, Pulmonary cedema, Supraventricular tachycardia, Vasoconstriction

Vomiting

Anaemia, Hepatic function abnormal, Hypertension, Infection, Vasoconstriction, Ventricular extrasystoles

Brain oedema, Hydrocephalus, Hypotension, Infection, Urinary tract infection, Vasoconstriction

Hypotension

Apnoea, Atelectasis, Brain cedema, Cerebral haemorrhage, Convulsion, Hyponatraemia, Hypotension, Intracranial pressure increas...
Hyponatraemia, Hypotension, Intracranial pressure increased, Respiratory disorder, Subarachnoid haemorrhage, Vasoconstriction,...
Cardiovascular disorder, Pyrexia, Vasoconstriction, Vomiting

Phlebitis, Pulmonary cedema, Pyrexia

Vasoconstriction

Hypertension, Intracranial pressure increased, Vasoconstriction

Alveolitis, Anaemia, Atrial fibrillation, Brain oedema, Cardiac failure congestive, Cerebral infarction, Coagulopathy, Electrocardiogr...
Alveolitis, Anoxia, Atelectasis, Brain oedema, Convulsion, Hypertension, Hypokalaemia, Hypotension, Intracranial pressure increas...
Alveolitis, Anaemia, Atelectasis, Brain oedema, Heartrate increased, Hydrocephalus, Hyperglycaemia, Hypokalaemia, Intracranial p...
Alveolitis, Atrial fibrillation, Brain oedema, Coagulopathy, Convulsion, Hepatic function abnormal, Hepatitis, Hydrocephalus, Hyper...
Hypertension, Pulmonary oedema, Urinary tract infection, Vasoconstriction

Diabetes insipidus, Enanthema, Hepatic function abnormal, Hyperglycaemia, Isosthenuria, Leukocytosis, Phlebitis, Polyuria, Pulmo...
Alveolitis, Anaemia, Atelectasis, Atrial fibrillation, Blood lactate dehydrogenase increased, Cardiac failure congestive, Gastrointesti...
Atelectasis, Brain oedema, Cerebral infarction, Hyperglycaemia, Infection, Intracranial pressure increased, Isosthenuria, Pyrexia, Uri...
Brain oedema, Hydrocephalus, Intracranial pressure increased, Vasoconstriction

Blood lactate dehydrogenase increased, Hypokalaemia, Hypotension, Lethargy, Overdose, Urinary tract infection, Vasoconstriction
Blindness, Hyperglycaemia, Hypotension, Sinus headache, Urinary tract infection, Vasodilatation

Brain oedema, Heart rate increased, Hydrocephalus, Hypertension, Hypokalaemia, Pulmonary oedema, Pyrexia, Sinus bradycardia,...
Brain oedema, Cardiac arrest, Cerebral ischaemia, Coma, Hyperglycaemia, Hypertension, Hypotension, Intracranial pressure increa...



Holdout Validation Options in JMP

4 = Make Validation Column

A validation column divides the rows of the data table into a training set to estimate the model; a
validation set to help choose a model that predicts well; and sometimes a test set to check prediction
after the model is chosen.

Validation Column utility available on
Predictive Modeling Menu éﬁ:;:rlﬁ;fit:c;w;ieilI;rcfii:;:-stDTralnlng_.‘-.-"allu:latlc-nandTestsets.

Total Rows 442

. . . . i Training Set
Stratified Random is a first choice Valdation e

for most data. e

.

Mew Column Mame |‘-.-"a|i|:|ati|::-n

Grouped Random Wi” keep rOWS Choose a methed to create the heldback sets:

. . . . Formula F{andoml Formula column with a random functicn.
within a group in the same portion of = . vmmomomieses [

th e data_ Stratified Random| Column with sets that are balanced across levels of selected

columns,

Grouped F‘.andoml Celumn with each level of the grouping column assigned entirely to
one set,

CutpOInt IS for tlme Sequenced data. Cutpoint | Column with holdback sets based on time series cutpoints,

[ Cancel H Help |




Evaluating Predictive Performance



Measuring Predictive Error

Not the same as “goodness-of-fit”

We want to know how well the model predicts new data, not how well
it fits the data it was trained with

Key component of most measures is difference between actual y and
predicted y (“error”

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro,

Wiley, USA https://www.wiley.com/en- 17
us/Data+Mining+for+Business+Analytics%3A+Concepts%2C+Technigues%2C+and+Applications+with+JMP+Pro-p-9781118877524
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Measures of Error

MAE, MAD, or AAE: Mean absolute error/deviation or average
absolute error

Gives an idea of the magnitude of errors

Average error
Gives an idea of systematic over- or under-prediction

MAPE: Mean absolute percentage error

RMSE (root-mean-squared-error) or RASE (root average squared error):
Square the errors, find their average, take the square root

Total SSE: Total sum of squared errors



Validation

Method

K Mearest Meighbors

Meural Boosted

Support Vector Machines
Boosted Tree

Bootstrap Forest

Fit Stepwise

Fit Least Squares

Generalized Regression Lasso
Decision Tree

Training

Method

Boosted Tree

Bootstrap Forest

Support Vector Machines
Meural Boosted

Decisicn Tree

K Mearest Meighbors

Fit Least Squares

Generalized Regression Lasso
Fit Stepwise

N
126
126
126
126
126
126
126
126
126

380
380
380
380
380
380
380
380
380

RSquare ~
0.8450
0.8437
0.8057
0.7698
0.7350
0.6714
0.6696
0.6696
0.6339

R5quare ~
0.97e0
0.9400
0.8041
0.8810
0.8548
0.8069
0.7555
0.7555
0.7551

RASE

3.7430
3.7582
4.1901
4.5611
4.8042
5.4496
5.4043
5.4043
5.7362

RASE

1.4026
22117
2.9473
3.1237
3.4505
3.9799
44784
4.4784
44817

mvalue

EEI-_ -
457 {;
4L'I—_ .
354 T
SD-_

25-_

EEI—_ [Eﬂ
'15—_

107

5-_ —
Quantiles
100.0% maximum a0
99.5% 50
a7.5% 50
90.0% 34.9
75.0% quartile 25
A0.0% median 212
25.0% quartile 16.95
10.0% 127
2 5% 8235
0.5% 5321

0.0% minimum

5

Summary Statistics

Mean

Std Dev

Std Err Mean
Lpper 95% Mean
Lower 95% Mean
I

22532806
89.1971041
0.408861
23.336085
21.729528

206

Candidates

Term Candidate SS
crim 8266.17273
zZn 6669.06251
indus 11083.22547
chas 1312.07927
nox 9536.22405
rooms 19339.55503
age 5573.64765
distance 4994 54054
radial 6708.64333
tax 8618.08428
pt 10438.69478
b 5259.31980
Istat 18896.19401

LogWorth
32.6638216
249773486
48.7519537

4.1110954
39.5670978

* 118.7473483
19.6751451
17.1453361
24.6205659
34.5266980
44 8775094
18.2910466

113.7427626

17



Least Squares Regression

T Crossvalidation
;eq'g:ss;; Pob Source RSquare RASE
o sae oo Training Set 0.7555 4.4784
Validation Set  0.6606 5.4643
Validation
Method N RS5quare © RASE
Meural Boosted 126 085704 3.4279
K Mearest Neighbors 126 0.8430 3.7450
Suppeort Vector Machines 126 0.8057 4.1901
Bootstrap Forest 126 07742 4.5169
Boosted Tree 126 0.7608 4.5611
Fit Stepwise 126 0.6714 5.4496
Fit Least Squares
Generalized Regression Lasso 126 0.6696 54643
Decision Tree 126 0.6339 5.7362

Actual by Predicted Plot

Freg
380
126

mvalue Actual

50

0

10 20

30

40 50

mvalue Predicted RM5E=4.5633 R5q=0.76
PValue=<.0001

Parameter Estimates
Std Error t Ratio

Term

Estimate

Intercept 26.179042

crim

zn
indus
chas[0]
Mo
rooms
age
distance
radial
tax

pt

b

|stat

-0.055294
0.0322328
0.0412445
-0.883567
-16.45433
4.82453
-0.00545
-1.235934
0.2203161
-0.010085
-0.903422
0.0138322
-0.467271

5776661
0.050779
0.016177
0.065292
0.452631
4.087227
0.487871
0.014688

0.21679
0.072558
0.003957
0.144214
0.003077
0.057654

4.53

-1.09

1.99
0.63

-1.95
-4.03

0.89

-0.37
-5.70

3.4

-2.35
-b.26

4.49

-8.10

Prob= |t]
0.2769
0.0471*

0.5280
0.0517

o ‘_I‘_I‘_I .
0.7108

20



Summary Across the Folds
M Trials Validation 5et Folds
Method Folds Sum Freq RSquare ~ Mean BASE  StdDev RASE
Meural Boosted 5 101.20 0.8954 2.9218 0.26628
Boosted Tree 5 101.20 0.5880 3.0666 0.26667
Bootstrap Forest 5 101.20 0.8650 3.3349 0.36637
K. Mearest Meighbors 5 101.20 0.8515 3.5052 0.54104
Support Vector Machines 5 101.20 0.8355 3.6512 0.570647
Decision Tree 5 101.20 0.7802 4,2195 0.69817
Fit Stepwise 5 101.20 0.7203 4,8105 0.46968
eneralized Regression Lasso 5 101.20 0.71497 4.8150 0.45423
Fit Least Squares 5 101.20 0.7174 4,8339 0.46423
Partition for mvalue
Number
RS5quare RASE M of 5plits AlCc
Training 0.880 31087280 405 21 211695
Validation 0.868 3119241 107
Split History
1.00
0.75 ——
E JE— ____f". _-__.___x'f
5 "
o 0.50 g
L
E L
0.25
0
0 5 10 15 20 25

Murnber of Splits
Yalidation Data in Red

Training Set

Validation Set

Actual

Actual

Actual by Predicted Plot

50

40

30

20

10

10 20 30 40 50
Predicted

Predicted



Actual by Predicted Plot
Regression (Decision) Tree e Training Set

Count 506 LogWorth Difference EID
Mean 22532806 118.74735 17.3044
Std Dev 9.1971041

- . I
Validation | ]
rooms<6.943 rooms>=6.943
Frequencies Count 430 LogWorth Difference Count 76 _4[]
Mean 19.933721 85352564  8.3038 Mean 37238158
Level Count Prob Std Dev 63534806 Std Dev 89384514
Training 380 0.75099 [ ‘ ‘
Validation 126 0.24901 Istat>=14.43 Istat<14.43
Count 175 LogWorth Difference Count 255 LogWorth Difference
EE D LY Mean 14.956 23188575 515925 Mean 23349804 4252122 226748 m 20
N Missing 0 Std Dev 44030105 Std Dev 5.1099014 =
=
— — 2 Levels /—‘—‘ ,—‘—‘ [}
Training Validation <
crim>=7.02259 crim<7.02259 distance>=1.413 distance<1.413
Count 74 || Count 101 | | Count 250 LogWorth Difference || Count 5
Mean  11.978378 || Mean  17.137G624 | | Mean 22,9052 43.048018 579753 | Mean 45.58
Std Dev 3.8568662 || Std Dev 3.3919567 | | StdDev 3.8658027 StdDev 9.8834205 20
rooms<6.546 rooms>=6.546
g Court 195 || Court 55
Partition for mvalue Mean ztezaria | ean 27 272m
Std Dev 2.0040200 || Std Dev 3.4511648 10

NMumber
R5quare RASE N of 5plits AlCc
10 20 30 40 50
Training 0.855 3.4504892 380 10 204452 Predicted
Validation 0.636 57362427 126

Validation Set
Split History

1.00

0.75 -

[
_I
Actual

0 2 4 & 8 10 12
MNumber of Splits 10 20 30 40 50

Predicted
Validation Data in Red

22



Prediction Error

Crossvalidation
Source RSquare RASE Freq
Training Set 0.7621 11.109 18

Validation Set 0.3381 16.771 22



Decision Tree Error Rate
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Accuracy Measures (Classification)



Decision Tree

Fit Details

Measure

Entropy R5quare
eneralized Riquare

Training Definition

0.7060 1-Loglike(model)/Loglike(0)

0.8323 (1-(L{0)/L{model))*(2/n))/(1-LIO)"2/r)

Mean -Log p 0.2038 5 -Leg(p[l)/n
. - - z
RASE 0.2333 V3 (v[jl-e[D/n
Mean Abs Dev 0.1620 % |v[l-e[l|/n
Misclassification Rate 0.0832 5 (p[jlzpMax)/n
M 24 n
Confusion Matrix
.
Training S E—
Actual Predicted Count oy s
BEE LR
Ownership non-owner owner — —
n2 Count G*2 Lo orth
non-owner 12 0 R 8 25008 2601908
I
OWNET E 1 D Lot Size>=20 l Lot Size<20 ‘
:nt G*2 Logworth Count G2 I..ogwonh
Actual Predicted Rate —
Ownership non-owner owner ol L .
1 Dm D 5 0 3 2519085 4 44086812 0723744 7 0
non-owner . 000
Lot_Size<18.8 Lot_Size>=188
owner 0.167 0.833 e e

Receiver Operating Characteristic on Training Data

1.00

0.90

0.80

0.70

0.60
0.50

Sensitivity
True Positive

0.40

0.30

0.20

Lift Curve on Training Data

20

1.8

1.6

Lift

1.4

1.2

1.0
0

Ownership Area
— non-owner  0.9820
— owner 0.9828
0.20 0.40 0.60 0.80 1.00
1-Specificity
Falze Positive
Ownership
— non-owner
- owWner

0,10 0.20 0.30 040 050 0.60 070 0.80 0.90 1.00
Portion




Misclassification error

Error = classifying a record as belonging to one class when it belongs to
another class.

Error rate = percent of misclassified records out of the total records in
the validation data.

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro,

Wiley, USA https://www.wiley.com/en- 27
us/Data+Mining+for+Business+Analytics%3A+Concepts%2C+Techniques%2C+and+Applications+with+JMP+Pro-p-9781118877524
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Naive Rule

Naive rule: classify all records as belonging to the most prevalent class

* Often used as benchmark: we hope to do better than that

* Exception: when goal is to identify high-value but rare outcomes, we
may do well by doing worse than the naive rule (see “lift” — later)

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro,

Wiley, USA https://www.wiley.com/en- )8
us/Data+Mining+for+Business+Analytics%3A+Concepts%2C+Technigues%2C+and+Applications+with+JMP+Pro-p-9781118877524
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Separation of Records

“High separation of records” means that using predictor variables
attains low error

“Low separation of records” means that using predictor variables does
not improve much on naive rule

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro,
Wiley, USA https://www.wiley.com/en- 79
us/Data+Mining+for+Business+Analytics%3A+Concepts%2C+Techniques%2C+and+Applications+with+JMP+Pro-p-9781118877524
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Confusion Matrix

Predicted Class

T 9 Count 0 1 Total
2 &0 2689 25 2714
< O 1 85 201 286

Total 2774 226, 3000

201 1’s correctly classified as “1”

85 1’s incorrectly classified as “0”
25 O’s incorrectly classified as “1”
2689 0O’s correctly classified as “0”



Error Rate

Predicted Class

T G Count 0 1 Total
2 80 2689 25 2714
< © 1 85 201 286

Total 2774 226, 3000

Overall error rate = (25+85)/3000 = 3.67%
Accuracy =1 —err=(201+2689) = 96.33%

If multiple classes, error rate is:
(sum of misclassified records)/(total records)



Cutoff for classification

Most data mining algorithms classify via a 2-step process:

For each record,
1. Compute probability of belonging to class “1”
2. Compare to cutoff value, and classify accordingly

e Default cutoff value is 0.50
If >=0.50, classify as “1”
If < 0.50, classify as “0”

e (Can use different cutoff values
e Typically, error rate is lowest for cutoff = 0.50



Cutoff Table (Riding Mowers

If cutoff is 0.50: 12
records are classified
as “owner”

If cutoffis 0.75: 8
records are classified
as “owner”

0o ~NO O WN =

[0 T 50 Y 1 0 50 Y Y P S R[S ) PRSP ) OIS O (S v [
A WON -2 OO 0O~NO O b WN - O ©

Actual Class Prob[owner]

owner
owner
owner
owner
owner
owner
owner
owner
owner
owner
owner
owner
non-owner
non-owner
non-owner
non-owner
non-owner
non-owner
non-owner
non-owner
non-owner
non-owner
non-owner
non-owner

0.102697297
0.561213154
0.941747935
0.7323180727
0.9998892877
0.9803565717
0.9448657753
0.9978033093
0.6683372877
0.9859447076
0.8794488943
0.8830365999
0.7088413043
0.4863742324
0.0917943278
0.1213584078
0.5788381
0.0133127658
0.0331493122
0.2010408317
0.0057710408
0.0033442195
0.0138203993
0.0646960932

Most Likely
Ownership

non-owner
owner
owner
owner
owner
owner
owner
owner
owner
owner
owner
owner
owner
non-owner
non-owner
non-owner
owner
non-owner
non-owner
non-owner
non-owner
non-owner
non-owner
non-owner

Predicted Class
at 0.25

non-owner
owner
owner
owner
owner
owner
owner
owner
owner
owner
owner
owner
owner
owner
non-owner
non-owner
owner
non-owner
non-owner
non-owner
non-owner
non-owner
non-owner
non-owner

Predicted Class
at 0.75

non-owner
non-owner
owner
non-owner
owner
owner
owner
owner
non-owner
owner
owner
owner
non-owner
non-owner
non-owner
non-owner
non-owner
non-owner
non-owner
non-owner
non-owner
non-owner
non-owner
non-owner
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Confusion Matrix for Different Cutoffs

| NON ) Predicted Class at 0.25
* The cutoff can be changed using a formula | ==~ B, _, froeseeed B o
n & new column. NI e | O
. Prob[non-owner] ) (t=](@ 82.’;1:‘2::’?;0”
* Different cutoffs can be compared to see i - .
. . . . . Predicted Class at 0.25 Probability - ear
Wh ICh prOVIdeS the |OWeSt m |SC|aSS|f|Cat|On Predicted Class at 0.75 Discrete Probability ¥l

error on the validation set

Prob[owner] <=0.25 = "non-owner"

else = "owner"

v ~ Tabulate

Most Likely Ownership Predicted Class at 0.25 Predicted Class at 0.75
non-owner owner non-owner owner non-owner owner
Actual Class Row % N| Row% N| Row % | N| Row%| N|( Row %  N| Row%| N
non-owner 83.33% 10| 16.67% 2| 75.00%, 9| 25.00%, 3| 100.00% | 12| 0.00% 6 O
owner 833% | 1| 91.67% 11 833%| 1| 91.67%| 11| 33.33%| 4| 66.67%| 8
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ROC and Lift



When One Class is More Important

In many cases it is more important to identify members of one class

Tax fraud
Credit default

Response to promotional offer

Detecting electronic network intrusion

Predicting delayed flights

In such cases, we are willing to tolerate greater overall error, in return for better
identifying the important class for further attention

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro,
Wiley, USA https://www.wiley.com/en- 36
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Alternate Accuracy Measures

If “C,” is the important class:

Sensitivity = % (or proportion) of “C,” class correctly classified
Specificity = % of “C,” class correctly classified

False positive rate = proportion of predicted “C,’s” that were not “C,’s”
False negative rate = proportion of predicted “C,’s” that were not “C,’s”

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro,
Wiley, USA https://www.wiley.com/en-
us/Data+Mining+for+Business+Analytics%3A+Concepts%2C+Techniques%2C+and+Applications+with+JMP+Pro-p-9781118877524
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ROC Curve

Sensitivity and 1-Specificity are plotted on an ROC Curve.

v Receiver Operating Characteristic
1.00
|

0.90
0.80 4|—|
0.70
0.60
0.50
0.40
0.30
0.20

0.10

0.00
0.00 0.10 0.20 0.30 040 050 0.60 0.70 0.80 0.90 1.00
1-Specificity
False Positive

True Positive
Sensitivity

Using Ownership="'owner' to be the positive level
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ROC curves

ROC curves are similar to lift charts
e Stands for “receiver operating characteristic”

* Used in signal detection to show tradeoff between hit rate and false alarm rate over noisy
channel

Differences to lift chart:
* yaxis shows percentage of true positives in sample rather than absolute number
* x axis shows percentage of false positives in samplerather than sample size

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro,
Wiley, USA https://www.wiley.com/en- 39
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A sample ROC curve

True positives

100%

80% -

60% -

40% -

20% -

0

|
20%

I | |
40% 60% 80%
False positives

* Jagged curve—one set of test data

* Smoother curve—use cross-validation

100%
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Cross-validation and ROC curves

Simple method of getting a ROC curve using
cross-validation:
* Collect probabilities for instances in test folds
* Sortinstances according to probabilities

* Another possibility is to generate an ROC curve
for each fold and average them



ROC curves for two schemes

100%

80% -

60% -

40% -

True positives

20% -

| | | |
0 20% 40% 60% 80% 100%
False positives

* For a small, focused sample, use method A
* For alarger one, use method B
* Inbetween, choose between A and B with appropriate probabilities w2



Lift Curves

Useful for assessing performance in terms of identifying the most
important class

Helps evaluate, e.g.,
 How many tax records to examine
* How many loans to grant
* How many customers to mail offer to

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro,
Wiley, USA https://www.wiley.com/en- 43
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Lift Curves

Compare performance of data mining (DM) model to “no model, pick
randomly”

Measures ability of DM model to identify the important class, relative
to its average prevalence

Lift curves give explicit assessment of results over a large number of
cutoffs



Lift Curves

Compare lift to “no model” baseline:

® For a given proportion of our data, in terms of propensity, how
much better does our model predict than the “no model” baseline.

What is lift:
® How much better the model classifies than random assignment.



Lift Curves ~hftCure

2.0

1.8

1.6

Lift

1.4
1.2

1.0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Portion

Ownership
— non-owner
— owner

For the top 30% of our data (top propensities), the lift is 2.0. The model
correctly identifies 2x the number of owners than the “no model” baseline.
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Generating a lift chart

* Sort instances based on predicted probability of being positive:

Rank Predicted Actual Rank Predicted Actual Class
1 0.95 Yes 11 0.77 No
2 0.93 Yes 12 0.76 Yes
3 0.93 No 13 0.73 Yes
4 0.88 Yes 14 0.65 No
5 0.86 Yes 15 0.63 Yes
6 0.85 Yes 16 0.58 No
7 0.82 Yes 17 0.56 Yes
8 0.80 Yes 18 0.49 No
9 0.80 No 19 0.48 Yes
10 0.79 Yes

e x axis in lift chart is sample size for each probability threshold
e yaxisis number of true positives above threshold



A hypothetical lift chart

1000

0 - i .
- O |
c B 600+ :
O T I
£ I
2 =
2§ 400+ :

200 [ ! i

0 : 5 B —: | |
0 20%  40%  60%  80%  100%

Sample size

/ !

40% of responses 80% of responses
for 10% of cost for 40% of cost



Asymmetric Costs



Misclassification Costs May Differ

The cost of making a misclassification error may be higher for one class
than the other(s)

Looked at another way, the benefit of making a correct classification
may be higher for one class than the other(s)

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro,
Wiley, USA https://www.wiley.com/en-

us/Data+Mining+for+Business+Analytics%3A+Concepts%2C+Technigues%2C+and+Applications+with+JMP+Pro-p-9781118877524
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Example — Response to Promotional Offer

Suppose we send an offer to 1000 people, with 1% average response
rate (“1” = response, “0” = nonresponse):

* “Naive rule” (classify everyone as “0”) has error rate of 1% (seems
good)

e Using DM we can correctly classify eight 1’s as 1’s.
It comes at the cost of misclassifying twenty 0’s as 1’s and two O’s as 1’s.

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro,
Wiley, USA https://www.wiley.com/en- 51
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The Confusion Matrix

Predict Class 0 Predict Class 1

Actual 0 970 20
Actual 1 2 8

Error rate = (2+20) = 2.2% (higher than naive rate)



Introducing Costs & Benefits

Suppose:

* Profit from a “1” is S10

* Cost of sending offer is S1
Then:

 Under naive rule, all are classified as “0”, so no offers are sent: no
cost, no profit



Introducing Costs & Benefits

 Under DM predictions, 28 offers are sent.

8 respond with profit of $10 each
20 fail to respond, cost S1 each

972 receive nothing (no cost, no profit)

* Net profit = S60

Profit Predict Class 0 Predict Class 1

Actual 0 0 — $20
Actual 1 0 $80




Generalize to Cost Ratio

Sometimes actual costs and benefits are hard to estimate

* Need to express everything in terms of costs (i.e., cost of
misclassification per record)

* Goal is to minimize the average cost per record

A good practical substitute for individual costs is the ratio of
misclassification costs (e,g,, “misclassifying fraudulent firms is 5 times

worse than misclassifying solvent firms”)



Minimizing Cost Ratio
q, = cost of misclassifying an actual “1”,

q, = cost of misclassifying an actual “0”

Minimizing the cost ratio q,/q, is identical to
minimizing the average cost per record



Note: Opportunity costs

* As we see, best to convert everything to costs, as opposed to a mix of
costs and benefits

* E.g., instead of “benefit from sale” refer to “opportunity cost of lost
sale”

* Leads to same decisions, but referring only to costs allows greater
applicability



Multiple Classes

For m classes, confusion matrix has m rows and m column:

* Theoretically, there are m(m-1) misclassification costs, since any case
could be misclassified in m-1 ways

* Practically too many to work with

* In decision-making context, though, such complexity rarely arises —
one class is usually of primary interest



Oversampling and Asymmetric Costs



Rare Cases

Asymmetric costs/benefits typically go hand in hand with presence of rare but
important class

e Responder to mailing
 Someone who commits fraud
* Debt defaulter
Often we oversample rare cases to give model more information to work with

Typically use 50% “1” and 50% “0” for training

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro,
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Example

The graphs on the following slides show optimal classification under
three scenarios:

* assuming equal costs of misclassification
e assuming that misclassifying “o0” is five times the cost of misclassifying “x”

* Oversampling scheme allowing DM methods to incorporate asymmetric costs

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro,
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Classification: equal costs

classify as "x"

classify as "o"




Classification: Unequal costs

T classify as "o"
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Oversampling Scheme

Oversample “0” to appropriately weight/
misclassification costs




An Oversampling Procedure

1. Separate the responders (rare) from non-responders

2. Randomly assign half the responders to the training sample, plus
equal number of non-responders

3. Remaining responders go to validation sample

4. Add non-responders to validation data, to maintain original ratio of
responders to non-responders

5. Randomly take test set (if needed) from validation



Classification Using Triage

* Instead of classifying as C, or C,, we classify as:

° Cl
° CO
 Can’tsay Take into account a gray area in making classification decisions

The third category might receive special human review



summary

e Evaluation metrics are important for comparing across DM models,
for choosing the right configuration of a specific DM model, and for
comparing to the baseline

* Major metrics: confusion matrix, error rate, predictive error

e Other metrics when

one class is more important
asymmetric costs

* When important class is rare, use oversampling
* In all cases, metrics are computed from validation data



ieti . Modern
Statistical Inference and Bootstrapping P ictice

A Computer-Based Approach
v

Preview In this chapter we introduce basic concepts and methods of statistical
inference. The focus 1s on estimating the parameters of statistical distributions
and testing hypotheses about them. Problems of testing if certain distributions fit

observed data are also considered.
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Bootstrapping background

A computer intensive method, proposedin 1979 by Brad
Efron from Stanford University in order to conclude

something about a statistic T computed from data, using
only the data.

Bootstrapping can be considered a Principle of
Statistical Inference that can handle non-standard
situations in an intuitive and robust way

von Minchausen, KFH (1783) The Guide to Happy People, Berlin
Efron, B (1979) Bootstrap Methods: Another Look at the Jackknife, Annals of Statistics 7(1): 1-26
Efron, B and Tibshriani, R (1993) An Introduction to the Bootstrap, Chapman and Hall, New York
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How does it work?

= Take a Random Sample With Replacement (RSWR) and compute the
statistic T

= Resample M times and re-compute statistic T

= Derive Empirical Bootstrap Distribution (EBD) and Bootstrap
Confidence Interval (Bl) for population parameter
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Testing for the mean

Hybrid1
2060
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2214 T T T T T T

2160 1950 2050 2150 2250 2350 2450
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i Is this significantly different from 2100o0hm ?
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Bootstrap testing for the mean

*
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Empirical Bootstrap Distribution of the mean

Empirical Bootstrap Distribution of Mean

100 0.95 conf. BI =
(2109.5, 2179.9)
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Bootstrapping the standard deviation
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Bootstrapping the ANOVA table

Hybridl Hybrid2 Hybrid3 _

2060 1907 1887 X, =2143.400
2127 1940 1834 X, =1902.813
1947 1700 1587 X, =1850.344
2140 1934 1814

1960 1707 1614 2

1960 1680 1680 57=9929.54
2134 1940 1747 S%; =16648.35
2054 1794 1660 2, = 21001.01
2094 1707 1600
%SBetween/MSWithin = 49.274




EBD of F values under HO

200 —

Frequency
=
o
o
I

0 — . . . . 'I' . . e —————— 1 >
S f e E= 49.274

Kenett, R.S. and Zacks, S. (2021) Modern Industrial Statistics: With Applications in R, MINITAB, and JMP, 3rd Edition, Wiley.
Kenett, R.S., Zacks, S. and Gedeck, P (2022) Modern Statistics: A Computer-Based Approach with Python, Springer.



Befitting Bootstrap Analysis (BBA) Principles

 BBA Principle 1: The generation of bootstrapped datasets should
reflect the goal of the study:.

 BBA Principle 2: The bootstrapped dataset should inherit the same
data generation structure as the original dataset.
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Wave soldering

Objective: Decrease number of solder defects

following wave soldering

Factors

A: prebake temperature -1
B: flux density -1
C: conveyor speed -1
D: preheat condition -1
E: cooling time -1
F: solder agitator -1
G: solder temperature -1

Levels

+1
+1
+1
+1
+1
+1
+1

Pattern

R

A

L e e e e R |
- =% =3 =% =% =3 =3 % =3 % =3 =% =% ok =3

L | [ |
—_ =% =3 =3 =k =3 =3 ek =3 ek ek =k ek ek 3k

[ | [ [ | [ I
-2 % -3 3% % -3 -3 % 3 % % 3% % % 3 %

i i i i i i i i
-2 % -3 % % -3 -3 % 3 % % 3% % % 3 %

(R | | (R | |
- - -1 -3 -2 -3 -1 3% -3 % 3 3 3 3 -1 _3

(R [ | | [ |
- - -1 -3 -1 -3 1 3 -1 _% 3 3 1 i 1 _3
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Wave soldering
T

Y1

500 times

Regression
coefficients
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Applying the bootstrap

(O}

%
ﬂSOO

EB
mean

EB EB
variance std

A: prebake temperature
B: flux density
C: conveyor speed

D: preheat condition

E: cooling time

F: solder agitator

G: solder temperature

95% BCI

LCI

UCI

o O W >

m

81



EBD versus Regression estimates™

Empirical Bootstrap 95% BCI

mean variance std LCI UCI
A| 05476 00596 0.2441 0.1929 0.9477
B|-05462 0.0597 0.2443 -0.935 -0.186
C| 1.4333 0.0604 0.2458 1.0754 1.8512
D|-0.1468 0.0577 0.2402 -0.5253 0.2114
E|-0.2822 0.0577 0.2402 -0.6391 0.1014
F| -0.166 0.0611 02472 -0.5817 0.1939
G|-08878 0.062 0249 -1.2623 -0.4692

Least Squares

Value Std. tvalue Pr(>t))
A| 05404 0.2986 1.8095 0.0779
B|-05393 0.2986 -1.806 0.0784
C| 14238 0.2986 4.7678 0
D| -0.153 0.2986 -0.5123 0.6113
E| -0.282 02986 -0.9442 0.3507
F|-0.1563 0.2986 -0.5235 0.6035
G|-0.8932 02986 -2991 0.0047

*After applying a square root transformation
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EBD versus Regression estimates

No interactions With interactions
Regr. Bootstrap Delta Regr. Bootstrap Delta

A 0.299 0.244 18% 0.239 0.249 -4%

B 0.299 0.244 18% 0.239 0.237 1%

C 0.299 0.246 18% 0.239 0.243 -2%

D 0.299 0.240 20%

E 0.299 0.240 20%

F 0.299 0.247 17%

G 0.299 0.249 17% 0.239 0.246 -3%
A*B 0.239 0.240 -1%
A*C 0.239 0.244 -2%
B*C 0.239 0.235 2%
A*G 0.239 0.240 -1%
B*G 0.239 0.239 0%
C*G 0.239 0.245 -3%

A*B*C 0.239 0.245 -3%
A*B*G 0.239 0.239 0%
A*C*G 0.239 0.245 -3%
B*C*G 0.239 0.239 0%
A*B*C*G 0.239 0.235 2%

Better model
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https://www.youtube.com/watch?v=Yi-e4sMK5tA&t=701s
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